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ABSTRACT

Both scheduled and replenishment as-needed strategies are analyzed for

multiple resource systems. It is found that in general the most efficient

strategies are those for which the replenishment is made with a combination

of units most closely resembling the failed resources. In this context,
*most efficient# refers to the smallest expected unit replenishment rate

required to generate a given level of continuing service. Quantitative

results are given for many cases of interest including replenishment with

multiple resources of different types. The techniques used can be extended

to other replenishment strategies and failure models.

The results are particularly applicable to multi-mission satellite

systems and can contribute to the econoiic analysis of such systems.

Acc'ssion For

NTIS CrA&I

JBti et" - i- '

Distribution/ -A

Availabill tY Codes
!Avail tnd,/cr

Dist Special

i-i



CONTENTS

Abstract iii

List of Illustrations vi

I. INTRODUCTION I

II. SCHEDULED REPLENISHMENT 4

A. General Considerations 4

B. Periodic Replenishment 5

C. Poisson Replenishment/Exponential Lifetime 7

1. Equilibrium Solution 9

2. Transient Solution 11

III. REPLENISHMENT AS-NEEDED, S-i SYSTEM 14

IV. REPLENISHMENT AS-NEEDED, S-2 SYSTEMS 16

A. Independent Failures 16

1. Equal Failure Rates .20

2. Unequal Failure Rates 23

B. Including Satellite Bus Failures 25

V. REPLENISHMENT AS-NEEDED, S-3 SYSTEMS 32

A. Replenishing Three-at-a-Time 33

B. Replenishing Two-at-a-Time 36

C. Bus Failures 38

VI. CONCLUSIONS 40

References 40

v

-.... . . . -,-



LIST OF ILLUSTRATIONS

1.1 Multi mission satellite systems (S-3, NO -4). 2

11.1 Survival probabilities for periodic replenishment. Average 6
number of active units - 4. Probability of successful launch
= .85. From Niessen, Ref. [2].

11.2 Survival probabilities for periodic replenishment. Average 8
number of active units - 6. Probability of successful launch =

0.85. From Niessen, Ref [2].

11.3 State diagram representing Poisson replenishment and 10

exponentially distributed unit lifetimes.

11.4 Required average replenishment rate (Poisson replenishment, 12
exponential lifetime).

IV.l Two satellite systems, N - 4 active units required of each 17
(two excess B's shown).

IV.2 State diagram representing independent failures, replenishment 19
two-at-a-time.

IV.3 Results for dual replenishments of 2 systems with independent 21
unit failures (equal failure rates): (a) Required replenishment
rate,(b) Average excess units, (c) Probability both are critical,
(d) Average run length.

IV.4 Results for dual replenishment with independent failures 24
(unequal failure rates).

IV.5 State diagram including bus failures (N - 2 active units 26
0

required).

IV.6 Annotated transition rates from state (1, 1, 2). (* indicates 28
replenishment required).

IV.7 Results for dual replenishment including bus failures (equal 30
package failure rates). No m 2.

V.1 Model representing replenishment of 3 systems three-at-a-time. 34
(Rates shown are normalized. States show excess active units).
* - launch required.

V.2 Normalized replenishment rate per system for 3 systems. 35

V.3 Model representing replenishment of 3 systems two-at-a-time. 37
(Rates shown are normalized. States show excess active units).
* = launch required.

"4

vi



I. INTRODUCTION

This report examines several topics relating to the replenishment of

multiple resources. The general problem has the following outline: It is

desired to maintain S systems in operation. In order to be considered

operational the s-th system must have N (s) working units. However, units

fail in a random, but describable way, thus requiring replenishment. Several

* ,models for describing unit failures will be considered as will several

replenishment strategies.

This class of problem was motivated by considering the particular case

of multi-mission satellites. Using satellite terminology the "units" of a

system are payloads that must be maintained on orbit. A system will also be

referred to as a "mission". Replenishment is accomplished by launching

additional satellites. Each satellite may carry multiple payloads to support

the multiple missions. Each satellite consists of a "bus" with support

equipment such as stabilization control, power supplies, etc., in addition to

the multiple payloads. It is assumed that each on-orbit payload is either

working satisfactorily or has failed. If the bus fails on a particular

satellite, all the payloads on that satellite are considered as having

failed. Thus multiple simultaneous failures will be considered in addition

to individual payload failures.

This is illustrated in Figure I-la, b, c for S-3 missions. Also shown

are the options of launching satellites containing 1, 2 or 3 payloads each.

Note that only an initial deployment is represented. After failures have

occurred there may be satellites in orbit with less than their initial number

of operating payloads. Replenishment satellites could also have 1, 2 or 3

payloads each.

A major issue in the system design is the selection of the best number

of payloads per satellite. A key factor in answering that question is the

replenishment launch rate. As will be seen subsequently, the rate of payload

replenishment, e.g., payloads per year, increases with the number of payloads

per satellite. This increase comes about from a mismatch between the minimum

i mI * 1it I &l~ i I ..lLh - i I i i k,=ll i .. . . .... .. . _ ,1
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Fig. 1.1. Multi-mission satellite systems (S-3, No=4).
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replenishment required (e.g., only Mission A) and the capabilities of the

replenishment satellite (e.g., Missions A and B). This increase could be

balanced by the possibility of a reduced cost per payload pound of multi-

mission satellites due to shared bus functions. (Also entering into the

decision would be the increased cost per pound of developing such

satellites.) This paper will not consider these economic issues further Ad

will only address the replenishment launch rate issues.

The results to be presented are felt to be applicable to situations

other than maintaining satellite systems on-orbit. For example, consider a

grocer trying to maintain N boxes of S types of junk food on his shelves.o

He might have a choice of a large number of small (expensive per box)

deliveries filling in just what he needs or a smaller number of larger

(cheaper per box) deliveries. He might also have the choice of ordering when

running low (replenishment as needed) or having a pre-determined delivery

quantity (scheduled replenishment). All of these replenishment strategies

will be treated.

The next section treats the case of scheduled replenishments, i.e.,

replenishment strategies that do not rely on the status of the systems.

These results are applicable to arbitrary S (number of resources). When

considering the more efficient strategies of replenishing when needed

(including bulk replenishment of multiple missions even though only one

requires it) the analysis is a good deal more involved. The cases of S =

1,2,3 are treated in separate sections. An attempt will be made to unify

results as they accumulate.

- However, they are important to consider because it is not always possible

to arrange satellite launches on an "as-needed" basis; launch dates are
often set years in advance.

3
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II. SCHEDULED REPLENISHMENT

A. General Considerations

"Scheduled replenishment" refers to strategies by which resources are

replenished according to some scheduling rule without regard to the actual

amount of resource needed. One expects such strategies to result in required

replenishment rates greater than those required by "replenish as needed"

strategies.

The basic results of this section apply to an arbitrary number of

systems (resources) S because the replenishment rates to be found are really

per system.

It can be shown in general that the average number of units that will be

found in service, N, is given by:

where
X - average replenishment rate (units/time period).

- average lifetime of a unit.

This intuitive relationship is an application of Little's result [Ref. 1, pg

17] and is valid for most replenishment and failure statistics that are

stationary with time.

If it is desired to maintain N units in operation with fairly high

0

probability then the average replenishment rate will need to be greater than

N 0 T because Eq. II-1 shows that this rate would yield only N working unitsO 0

on average. The next sections explore this issue for representative cases.

One further definition will be introduced now that will be used throughout:

ii/(11-2)

= each unit's failure rate (per time period)

Further physical interpretation for P will be given in Section C.

4



B. Periodic Replenishment

[1
Several years ago C. Niessen studied the periodic replenishment

problem. He considered units that had either expontential or uniform

distributions for their lifetimes. (He also considered launch failures as

well as the replenishment of more than one identical unit at a time.) A

brief summary of his technique follows for the case of periodic, single-unit,

successful replenishments:

After the K-th launch at time (K-1)T the number of surviving units N(t)

can be represented as a sum of independent random binary variables:

K-1
N(t) W (t-jT) (11-3)

j-O

where T - time between launches and

( I if unit launched t-ago still survives
W(t)

if unit launched t-ago has failed

For exponentially distributed unit life-times

P [W(t) = IJ e- t  t#O (11-4)
0 t<0

and for uniformly distributed life-times

P [W(t) = 1] = Ot<2

0 elsewhere

He was then able to calculate the probability distribution of N(t). An

K example is shown in Figure (11-1) for the particular case of exponential

life-times and N-4 units surviving on average. (In this particular example

the probability of successful launch is 0.85. The expressions in 11-4 and
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Fig. 11.1. Survival probabilities for periodic replenishment. Average
number of active units *4. Probability of successful launch .85. From
Niessen, Ref. (2].
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HI-5 can be multiplied by 0.85 to take this into account.) The sawtooth

nature of the curves reflects the periodic launch strategy. Note that in

equilibrium the probability of 4 or more units operating successfully drops

to about 0.5 just before each launch. If the desired number of operational

units were 4 this would not be reliable enough. Figure (11-2) also taken

from 12] but with W-6 shows that this 50% increase in launch rate would yield

a probability > 0.8 of maintaining 4 operational units. As will be discussed

in Section III, this is 50% above the replenishment rate that would be

required for launching only when needed.

C. Poisson Replenishment/Exponential Lifetime

An easier model to work with and one which also could be realistic in

many cases is that of Poisson replenishment scheduling and exponentially

- distributed lifetimes for each unit. The Poisson replenishment scheduling

physically (and roughly) means that replenishment can take place during any

small interval of time independent of previous or future events. This model

leads to exponentially distributed inter-replenishment times. The same

interpretation holds for unit failures with exponentially distributed

lifetimes. A more complete description of this system is as follows.

Let

A average replenishment rate

and P = l/L (1M-6)

= average failure rate per unit.

(Both of these rates are with respect to time.) That is, the probability of

replenishing a unit in a small time interval At will be X(At) independent of

time and independent of the number of surviving units. The probability that

a unit survives an interval of time t is e- t and its probability of failure

is V(At) in interval At. The unit's average lifetime L is equal to

The replenishment rate could advantageously be made dependent on time if

the system's state were known. This strategy can be analyzed but will not
be pursued further.

I
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Fig. 11.2. Survival probabilities for periodic replenishment. Average
number of active units -6. Probability of successful launch -0.85.
From Niessen, Ref (21.
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1/p. If N units are operational at any time then the probability of a

failure in time At is NP(At). The probability of more than one failure in At

is negligible.

This replenishment strategy can be represented by the continuous time

Markov chain shown in Figure 11-3. (Kleinrock, Reference 1, Chapters 2-4

provides a good reference for all of the Markov process manipulations to be

performed.) Each circle represents a state of the system which in this case

is chosen to be the number of surviving units. The arrows represent

transition rates which if multiplied by At would give the probability of

making the indicated transition in time At.

1. Equilibrium Solution

This particular chain is seen to be a birth-death process with a well

known equilibrium solution: The probability, P., of being in state j (that

is, having j units in operation) is:

P.=(X/)j- •-(X/ )  0(11-7)

jj

which is simply a Poisson distribution. The average number of units in

operation will be

-P

=jM0 j  (-8

which is a special case of Eq. (II-1). It is also well known that the

variance of the number of units in operation will be:

a N = X/P (11-9)4 oN

which is numerically equal to the average number.

This result is valid for arbitrarily distributed lifetimes.
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Figure 11-4 shows the replenishment rates needed to maintain at least N0

operating units with various degrees of confidence. The launch rate is

expressed as the normalized quantity

A = average number of units in operation (..-10)
" o number of units required
0 0

The actual launch rate required, A, increases with N and u, and depends on
0

the confidence desired. The confidence is expressed as the probability that

at least N units are in operation. The figure shows that as N increaseso 0

the required i approaches N . This happens for large numbers of units

because the relative fluctuation of the number of units around the mean is

small and a replenishment rate about equal to the failure rate (N o) will
0

suffice. At low or moderate N0 , however, replenishing at the average failure

rate is not sufficient. For exmple, to keep at least N -4 units in

operation with probability .9 will require a replenishment rate sufficient

to keep 1 - 6.7 units in operation on average. (Note: If it were desired to

account for unsuccessful replenishments, the rate A should be considered as

the rate of successful replenishments only. The replenishment process formed

by independent failures of exponentially scheduled replenishments still has

an exponential distribution.)

2. Transient Solution

Figures II-1 and 11-2 show the transient build-up to steady-state for

two examples of periodic replenishment. The transient solution for Possion

replenishment and exponential life-times exhibits similar behavior, but with

an easily attained closed form. In particular, if units are begun to be put

into operation at time t-0 at rate X, then at time t, the average number in

service, 1(t), will be:

See, for example, Kleinrock [Ref. 1], page 82, problem 2.12.

11
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(t) - - (1-e - ) (Z-)

and the probability that j are in service will be:

[pt] (t)t ez-2

. 'which is seen to be a time-varying Poisson distribution with Eq.(II-7) giving

the steady-state values. The form for T(t) shows that equilibrium is reached

• with a time constant of 1/P, depending only on the lifetime of each unit.

If there were K units in service at time t-0, the number of these0

original units serving to time t would follow a binomial distribution with:

K-_k
P(k units surviving out of K 0 - ) eUtk (l-e-ut) ° -  (1-13)

Thus, the number of units in service at time t, given K were in service at
0

t-O with Poisson replenishment thereafter is the sum of a binomial and a

Poisson random variable. Using discrete convolution, the complete solution

to the probability of finding j units in service at time t is:

P (j units at time t I K at t-O)0

K e-titk ( -e-ut ) 0 [ff(t)]

k-0 ( (1-14)

13



III. REPLENISHMENT AS-NEEDED, S-I SYSTEM.

To begin the discussion of replenishment-as-needed strategies, the

simple case of S-1 system will be considered. Only exponential lifetime

models will be treated and it will be assumed that replenishment takes place

instantaneously.
Suppose it is desired to maintain N units in service, each unit having

0

failure rate U (average lifetime 1/). The required replenishment rate must

be equal to the rate of failure generation. The rate of failure generation

will be NoU, N times the failure rate of one unit. Again, letting X - the
0

replenishment rate, the fundamental relationship is:

A-Nu (II-l)
0

A proper derivation of I1-I is as follows: Beginning at any time, a

replenishment will next be required when any of the N units in service
0

fails. The probability that no replenishment will be required in the next

time period of duration t will be:

N
P (no replenishment in next t) - [e - t ] 0 (111-2)

which is the probability that all N units have survived. (Note that the
0

memoryless property of the exponential distribution is being fully

exploited.) If the probability density function of the time to next

replenishment is denoted as p r(t), then Eq. 111-2 says:

In practical terms, it is assumed that replenishment is accomplished in a

time much shorter than the average time to the next failure. In the
satellite case the number of active units required, No, usually includes an

on-orbit spare to provide continuity of service. It is implicitly assumed
that there is an inventory of units which will always be able to supply a
replenishment unit when needed.

14



~t -Nuot

f pr(x) dx 1- e - (111-3)
0

and hence

pr(t)- N 0P e -No t  (111-4)

It is seen immediately from (111-4) that the time to next replenishment is
* exponentially distributed with average value 11(No 0). This not only verifies

(III-1) as giving the average rate of replenishment, but shows that the

* replenishment process is Poisson. Specifically, the probability of requiring

j replenishments in any time duration T, P.(T) will be:

(N pT)'
P.(T) = oNo (11-5)

The average number required will be N uT and the standard deviation will be

. NouT. Thus, taken over a time period long enough to average 100
0

replenishments the standard deviation will be only 10% of the average.

However, the relative fluctuation in the number of replenishments will be

much larger over time durations averaging only, say, 10 or 20 replenishments.

For example, if the expected number of replenishment over some time period is

10, then there is a 21% chance of requiring 13 or more replenishments which

is 30% more than the average. Satellite systems for which the operational

usefulness lasts through only 10 or so replenishments must expect

considerable uncertainty as to the total number of satellites to be procured.

15
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IV. REPLEMISHNENT AS-NEEDED, S-2 SYSTEMS

In order to analyze the replenishment as-need strategy when S=2 systems

are involved, it should first be noted that if each system is replenished

separately, e.g., one payload per satellite, then the results of the previous

section apply directly.

The interesting case here assumes that the units are replenished two-at-

time with one unit of each type, i.e., no "doubles". If the two systems are

labeled A and B, then if either system requires replenishment it will be

assumed that an A and B unit will be provided even though one of them is not

needed at that moment. (In the satellite case this is equivalent to saying

that all launched satellites are configured with both payloads A and B.)

Thus while one system has exactly N units in operation, the other one willo

have at least N . (Only the case where equal numbers of A and B units are0

required will be considered here. The models to be presented would

generalize to unequal requirements in a straightforward way.)

Two failure models will be considered:

Independent failures of all units
and

Dependent failures corresponding to the loss of a satellite
bus in addition to independent failures.

A. Independent Failures

As applied to the satellite case, independent unit failures correspond

to considering only payload failures, ignoring the possibility of bus

failures or assuming that the bus failure rate is much less than that for the

payloads. This is illustrated in Figure IV-1 for N - 4 which shows
0

satellites carrying packages only. In some cases, the satellites have a

failed package indicated by a blank. Replenishment satellites always carry

an A and B package. While there are only 4 active A packages, the example

shows two "excess" B's which are still active.

16
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Fig. IV.I. Two satellite systems, No  4 active units required of each
(two excess B's shown).
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Figure IV-2 shows how the replenishment system can be modeled as a

Markov Chain on a 2-dimensional grid. The horizontal axis gives the number

of active A units and the vertical gives the number of active B units. The

only allowed states are along the L-shaped path shown where one or both

systems must have exactly N active units. The failure rates for each A and0

B unit are P and )j respectively. Note that the chain is driven to thear A PB

right ("excess" A's) by failures in the N B units which are active and
0

driven upwards by failures in the A units.

The state probabilities, P(jk), are readily found by using the well-

known techniques applied to one-dimensional birth-death queues in equilibrium

[1, Chapter 3]. In particular, the rate of crossing a dividing line between

two states must be equal in both direction while in equilibrium.

For example,

(No+j)PA P(N0 +j, No) - NouBP(No+j-1, No) j>O (IV-l)

rate left rate right

Using P(No, N ) as the starting point gives:

P(N +j, N) (N o UB/UA)j P(No, No) (IV-2a)

J (No+k)

and

P(No, N0 +j)= (NoPA/PB)J P(No, NO ) (IV-2b)

(N 0+k) j>O

That is, the probability of having j A units and k B units active.

18
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Fig. IV. 2. State diagram representing independent failures, replenishment
two-at-a-time.
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(These expressions d' not appear to reduce to more elemental forms.) The

value of P(No, NO ) is found by requiring that the state probabilities sum to

unity.

Once the state probabilities are known then other important questions

can be answered. For example, the average required replenishment rate will

be:

A = Npo B  P(N +j, NO) + NoP A k P(No, N + k) (Iv-3)jO o o k=A oo

which is found by examining the conditional launch rate for each state. The
average number of A units exceeding the required value of N will be:

o

average "excess" A's E EA

JP(N+j, N) (IV-4)
j-O

with a similar expression for the average excess B's, EB.

The case of equal failure rates will be examined next as a special case.

1. Equal Failure Rates.

First, let PA - PB - P. Figure IV-3 gives some numerical results

for four parameters:

a. X/PN is the normalized average replenishment rate from Eq.
0

IV-3. Recall that each replenishment consists of an A and B unit. If units

were replaced individually the replenishment rate would be N (See Eq. III-

1) for each. It can be seen from the figure that this ideal is

asymptotically reached only for large N . When N is moderate, around 5 for

example, the average rate is 1.2 N p which is an increase of 20% over the
0

minimum possible. This is due to the fact that excess units of one type must

be placed in service because a circuit of the other type has failed.

20
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b. (EA+ E B)/N is the normalized expected number of "excess"
units of either type in service from Eq. IV-4. Only one unit will have

excesses at any particular time so this figure is the average number that

would actually be observed. (Over the systems' lifetimes, each would exhibit

one half of the excesses.) The normalized excess is seen to decrease with N0

However for moderate N a 4 or 5, there will be about 40% excess units of one0

type or the other found in service.

c. P(No, N ) is the probability that both systems are "critical",
00

i.e., they both have only N units in service. When in this state the

average time to next replenishment is l/(2N 0P), whereas in all others it is

1/No . The figure shows that the fraction of time in this state decreases

with N
0

d. (Run)p is the normalized average time the system will have a

run of either excess A's or B's. (It is normalized by the unit lifetime,

1/u.) This is described as follows: Suppose the system is in the (No, NO )
00

state with A and B critical. If an A unit were to fail, the replenishment

needed would put B in excess. The system will remain with B in excess until

the next time (N0 , N ) is reached. This time in excess is being called a

run. It gives an indication of how long it takes to flush excess units out

of the system. The figure shows that the average run time decreases with N
0

and is always less than the lifetime of a single unit, but may last for many

average replenishment times. It is found as follows:

At any time, the system will either be in state (N0 , N ) or in a run. The
00

fraction of time the system is in state (N0 , N ) is just P(No, N ); the
0 0 0 0

fraction of time spent in all runs is l-P(No, N ). Each time the system

o leaves (or enters) state (N0 , N0 ) a run is begun (or ended). Thus if the

system is observed over some long time period T the expected total time

spent in (N0, N ) can be written as:0

Note that the average number of excess units during a run is equal to EA or

EB divided by the probability of being in an excess of A or B run
respectively.
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expected total time in (No, N ) (IV-5)0

= (expected # of runs) (expected time to be held in (No, No))
00

Two of the three terms can be substituted with other expressions:

T P(No, N) - (expected # of runs) (l/2N 0 ) (IV-6)

Thus,

expected # of runs - 2N oiT P( N, N ) (IV-7)

Since

expected total time in runs

- (expected # of runs) (expected run length)

- T(-P(No, N )) (IV-8)L0

it is found that

expected run length -Run

1- P(No, N )

2N 0P P(N0, N0T (IV-)

The curve of Figure IV-3d results.

2. Unequal Failure Rates

If one of the units is less reliable then it will have a higher

failure rate. Suppose A is less reliable so that

PA > B"

Figure IV-4 gives some numerical results illustrating the effects of

imbalanced failure rates. The curves are plotted versus the ratio of failure

rates A/ B for a few values of N

2o
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Fig. IVA4. Results for dual replenishment with independet failures
(unequal failure rates).
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a. P[Excess B] is the probability that there is at least one

excess B. As PA/PB increases this probability approaches unity since the

less reliable A's are forcing unnecessary replenishments of B units.

b. AIN0pB is the replenishment rate normalized by the failure

rate of B's. When u A/PB is large enough the replenishment rate will be

dominated by the failures in the A units and X will approach N0pA' Thus

-/N opoB will approach PA/PB as shown in the figure.

c. EB/N is the expected number of excess B units normalized by

N 0O . The expected number of B units in service is )/p B" As p A/PB increases

this will approach N0(uA/PB). Hence the expected normalized excess number of

B units will approach (u A/B-1) as indicated. The number of excess A units

approaches zero since they are almost always in critical supply.

B. Including Satellite Bus Failures.

Figure I-1 illustrated the point that satellites are constructed with

the payload units mounted on a bus. In addition to the payload unit failures

which were treated in the last section, the effects of bus failures will now

be included. At any time, satellites with three combinations of working

units may be found on-orbit:

Type AB with both payloads and the bus operating.

Type A with only payload A and the bus operating (B having failed)

Type B with only payload B and the bus operating (A having failed)

(In addition, of course, there would be useless dead-wood consisting of

satellites with failed buses and/or both A and B packages that have failed.)

The state of the system can be characterized by a triplet of numbers

indicating the number of each type of useful satellite remaining. An

enumeration of the states as well as the transition rates among them is shown

in Figure IV-5 in which the desired number of working units, N , is equal to

2. Each state is labeled with the number of type AB, type A, and type B
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satellites. The transition rates are given in terms of the package failure

rates, P A and PB' as well is the bus failure rate, PBus; It is assumed that

failures of the packages and buses occur independently. The figure shows

only the upper half of the state diagram, including just those states with

both systems critical or excess B's (equivalent to those states with exactly

2 working A's). It should be clear how to extend it symmetrically to excess

A's.

Figure IV-6 is an annoted example of the transitions from one of the

states, (1, 1, 2), also showing which transitions are concommitant with a

replenishment launch (not all of them are). It should also be noted that

there is a self-loop that occurs if the bus of the type AB satellite fails.

The state would not change but a replenishment would be required. This

occurs at rate Bus*

The equilibrium state probabilities fo the system shown in Figure IV-5

were found using standard Markov chain techniques [Ref. 1, Section 2.41. The

approach is given briefly as follows:

First number the states (in any order). Then define the elements q.i of

the matrix transition rates Q as follows:

q.. transition rate from state i + state j i*j

q - Iqij  (IV-10)

Then putting the state probabilities P. into row-vector form, P, the

following linear matrix equation and normalizing condition will yield the

solution for P:

However another interpretation of bus failure is that of an entire

satellite failure, or failure of function needed by the other packages,
e.g., a cross-link, or that of non-independent package failures. The
appropriate interpretation depends on the application.
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Payload A Fails

Payload B Fails On

Fig. IV.6. Annotated transition rates from state (1, 1, 2). (*indicates
replenishment required.)
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PQ 0

and (IV-ll)

- j IZ--

The matrix equation is nothing more than the equilibrium "rate-in equals

rate-out" condition for each of the states.

These equations were solved for the system of Figure IV-5 by first

truncating the number of states to those shown plus the symmetrical lower

ones. Only the case PB - PA was considered. The probability of reaching the

extreme states turned out to be less than .05, showing that the truncation

did not significantly disturb the results to follow.

Figure IV-7 shows two key numerical results. Both are plotted versus

the parameter p - 0Bu/( PA+ PBus) which is an indication of the relative

failure rates of the bus and each package. When p-0 it is equivalent to no

bus failures, the case treated in the previous section. When equal to one,

the only failures are bus failures (or simultaneous package failures).

a. X/N (uA + P Bus) is the normalized expected replenishment rate.

P + PBus can be thought of as the mission failure rate for each payload

caused by either a payload or bus failure. When p-0 the result is the same

as the previous section's (see Figure IV-3a). When pOl the replenishment

rate exactly matches the bus failure rate, NopBus, which will imply 100%

effective replenishment of failed resources with no build up of excesses.

X is calculated by examining the conditional launch rate of each state,

weighting it by the state's probability and summing. The conditional launch

rate for all states where only A is critical is 2(PA + PBus ). The launch

rate for those states where A and B are both critical ((2, 0, 0), (1, 1, 1)

and (0, 2, 2)) is 2'A + 2uB + (# of buses)Bus '

b. EB IN is the expected normalized excess number of payloads of

either type that would be found. As shown it is maximum when p=0, indicating

29
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independent failures allowing excesses of one type or another to build up.
When PI no excess units build up because all failures are double failures,
replenished efficiently by just the right number of new units.

The reader should see how to generalize to other values of N or
0

differing P A and PR: It is a question of careful bookeeping to account for
the allowed state transitions. The qualitative nature of the results should

also be clear.

It also should be noted that the transient behavior can be found. In
particular if the state of the system at time t-0 is known, the probability

row vector at time t will be:

P(t) - P(O)eQt (IV-12)

where P(O) is the probability row vector at t-O. (The usual definition of
matrix exponentiation is being used.)
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V. REPLENISHMENT AS-NEEDED, S-3 SYSTEMS

When dealing with S-3 systems, (labeled A, B and C), the units can be

replenished one, two or three at-a-time. (Only replenishment as-needed

strategies are treated here. Scheduled replenishment was treated in Section

II.)

If replenished one at a time, then according to Eq. (III-i), the

replenishment rate will be equal to N p, where N - the number of active
0 0

units maintained and P - the failure rate per unit. (These parameters need

not be the same for each system.)

Replenishing two-or-three-at-a-time is considerably more involved.

While Markov chain models can be developed that take into account bus

failures, differing unit failure rates, differing active unit requirements

and differing strategies for deciding which excess units should be added,

only some simplified cases will be examined here. The simplifying

assumptions to be used are:

1.) the same number of active units are required in each system and
will be denoted as N

0

2.) the failure rate per unit is the same for each system and will

be denoted as P

3.) unit failures occur independently and with exponential distribution

for their lifetime (average lifetime = 1/p per unit).

4.) no "bus" failures are considered.

5.) replenishing three-at-a-time always includes one of each type of

unit, e.g., only ABC never ABB.

and 6.) replenishing two-at-a-time always includes units of two different

types, e.g., AB is allowed but AA is not.

With these assumptions, the three-at-a-time and two-at-a-time solutions

will now be presented.
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A. Replenishing Three-at-a-Time

When replenishing three-at-a-time, new units A, B and C will be placed
in service when the number of units of any one system drops below No . While

the state of such a system could be taken as the number of A, B and C units

in service there is another representation that requires fewer states. lt is

sufficient to know the count of the three types of units without regard to

which unit is associated with which count. For example if one system has N0

another has N + I and the third N + 3, this state specification would
0 0

actually represent any of the 6 ways to assign these counts to systems A, B,

C. This state will be labeled (0, 1, 3) indicating the number of units in

excess of N . (One of the terms must always be zero. Even though0

superfluous, it will be carried along as a reminder.) The counts will always

be shown in non-decreasing order. This simplification will be valid because

the failure rates for the units are the same as are the number of required

active units for each system.

Figure V-1 shows the Markov chain model using the state definition just

described. The transition rates are shown, omitting the factor of 1i that

multiplies each value. The transitions marked with an asterisk are those

associated with a replenishment. The conditional replenishment rate for each

state is N P times the number of counts that are at zero excess.
0

In order to solve this probabilistic system it was turned into a finite

Markov chain by allowing up to only M excess units of any type. Any units in

excess of M are permanently lost. For M-3 this is equivalent to redirecting

the downward transitions from the bottom row of Fig. V-i to the left (and

eliminating the downward transition from (0, 3, 3)). Then the procedure

outlined in Section IV could be applied. After solving for the state

probabilities the replenishment rate was calculated and it is shown in Figure

V-2 normalized by N oi versus N for values of M from 3 to 6. The

replenishment rate is that for each unit to facilitate comparisons with the

one or two-at-a-time cases. In the three-at-a-time case the package

replenishment rate is equal to the bulk replenishment rate since each

replenishment contains one of each type of unit.
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Fig. V.1. Model representing replenishment of 3 systems three-at-a-time.
(Rates shown are normalized. States show excess active units.)
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The curves show that as N grove, the replenishment process becomes moreo
efficient with the normalized rate heading toward its minimum possible value

of unity. (This is achieved only with one-at-a-time replenishment.) Also,

as the number of allowed excess units increases the replenishment efficiency

becomes better because there are fewer wasted spares. For N up to about 100

the numerical results show that there will be little reduction in the

required replenishment rate even if larger M were allowed. For example, for

N -5 the probability of ever having 6 or more active spares of any unit will
0

be less than .05 showing that increasing M beyond 6 will have little effect.

B. Replenishing Two-at-a-Time

The two-at-a-time curve in Figure V-2 was found in a similar manner from

the state diagram of Figure V-3. The state notation is the same as Figure V-

1. The replenishment is as follows: If the unit count for any system drops

below the critical value of N a replenishment is performed consisting of a

replacement for the failed unit plus a unit of the system remaining with the

lower count. For example suppose there are N A-units, N + I B-units and
0 0

N +2 C-units (state (0, 1, 2)). If a B or C unit fails no replenishment is
0

required. However if an A unit fails a replenishment will be arranged with

an A and B unit sending the system to state (0, 2, 2). This transition

happens with rate N 0i.0

The bulk replenishment rate is calculated in an identical way to the

three-at-a-time strategy. This is the rate of required replenishments of any

type. In satellite terminology this would be the required launch rate. For

the two-at-a-time strategy, however, the replenishment rate er system will

be 2/3 of the bulk rate, since on the average each unit type will appear on

on only 2/3 of the replenishments. The replenishment rate per system is

shown in Figure V-2.

The calculation was performed allowing a maximum of 4 spare (above N )0

units. However the results showed that, even with N -100 units required, the
0

If the two remaining systems have the same count a random choice is made.
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probability of having 4 or more spare units is less than .02. Thus the two-

at-a-time curve appears valid even if unlimited spares were allowed.

Once again it is seen that with larger N required the resulting

replenishment is done with greater efficiency. It is also clear that two-at-

a-time replenishment is more efficient than three-at-a-time replenishment.

This is expected since assets are being placed into service with a

distribution more closely matching the failure patterns. The most efficient

is, of course, to replenish only the units that have failed one-at-a-time.

It is important to remember that replacement rate is not the only

criterion on which to base a replenishment strategy. It is the overall cost

that must be considered. In particular, for satellite applications, the cost

of replacing a payload with a single mission satellite could be more than 1/2

or 1/3 of the cost of two-at-a-time or three-at-a-tim replenishment because

of shared overhead functions for multi-mission satellites. On the other hand

the mission failure rates (bus plus package) for multi-mission satellites may

be greater due to increased complexity.

C. Bus Failures.

While no detailed analysis of the type done in Section IV-B for 2

systems including bus failures has been done, there are some observations

that can be made. Suppose that the only failures were due to bus failures.

Then the bulk replenishment (launch) rates would be as follows:

A - 3N0MBus(I) one-at-a-time

3N
0 u (2 )  two-at-a-time
T Bus(2

NoP Bus (3) three-at-a-time

whre P Bus(k) - bus failure rate for k-at-a-time replenishments. The launch

rate pr system normalized by the mission failure rate (pu (k)) and the
Bus

number of units required all turn out to be the same, unity.
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The greatest spread in replenishment rates (normalized by mission

failure rates) mong the three strategies will be for the case of independent

(no bus) failures and equal unit failure rates. This is shown in Figure V-2.
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VI. CONCLUSIONS

Both scheduled and as-needed replenishment strategies were analyzed for

multiple resource systems. It was found that in general the most efficient

strategies are those for which the replenishment is made with a combination

of units most closely resembling the failed resources. In this context,

"most efficient" refers to the smallest expected unit replenishment rate

required to guarantee a given level of continuing service. Quantitative

results were given for many cases of interest. The techniques used can be

extended to other replenishment strategies and failure models.

The results are particularly applicable to multi-mission satellite

systems and form a major element in the economic analysis of such systems.
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